

    
      Navigation

      
        	
          index

        	
          next |

        	Vumi Go 0.5.1a documentation 
 
      

    


    
      
          
            
  
Welcome to Vumi Go’s documentation!

Vumi Go is a hosted version of Vumi. Where Vumi gives you the tools to build
large scale messaging applications, Vumi Go provides you with a working
environment that is already integrated into numerous countries.

Vumi Go offers the following on top of Vumi:


	Managing contact information and groups of contacts.

	The ability to store all messages sent and received.

	A set of applications ready for you to use.

	A sandboxed Javascript environment for you to use to develop (and host)
your own applications that will run on our scalable infrastructure.



This documentation is mostly geared towards beginning developers interested
in building Javascript based applications that can be hosted on Vumi Go
and which can interact with a user base via SMS, USSD and other messaging
channels.



	Sample Applications

	Available Resources for the Javascript Sandbox

	Example Code for Javascript Sandbox features

	Vumi Go’s HTTP API

	Vumi Go Dashboards





For developers:



	Vumi Go Architecture

	Vumi Go Messaging Architecture








Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Vumi Go 0.5.1a documentation 
 
      

    


    
      
          
            
  
Sample Applications

A number of example applications have been built that highlight different
bits of functionality.

Ushahidi

This is an application that exposes the functionality of Ushahidi over USSD.
It allows submission of reports via a USSD menu and uses Google Maps’ API
for geolocation based on raw address input.


	source

	https://github.com/smn/go-ushahidi

	demo

	Available in South Africa on *120*8864*1087#, interacts with
http://vumi.crowdmap.com/



Google Maps Directions

This application allows people to receive directions from Google Maps’ API.
It asks where the user currently is and where they want to go. Using Google’s
API a geolocation is done on the raw input and the directions are sent to the
user via SMS.


	source

	https://github.com/smn/go-google-maps

	demo

	Available in South Africa on *120*8864*1105#.







          

      

      

    


    
         Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Vumi Go 0.5.1a documentation 
 
      

    


    
      
          
            
  
Available Resources for the Javascript Sandbox

The Javascript sandbox provides an isolated environment within which
a developer’s (your!) application code is run.

It talks to the outside work via what are called “Resources”. These resources
expose core Vumi functionality inside the Sandbox in a controlled fashion.

Applications in Vumi Go’s Javascript sandbox have the following resources
available:

config

This provides access to the config variable as stored in the Vumi Go UI.


	
class go.apps.jsbox.vumi_app.ConversationConfigResource(name, app_worker, config)

	Bases: vxsandbox.resources.utils.SandboxResource

Resource that provides access to conversation config.





outbound

This provides access to outbound messaging from the Javascript sandbox to
the end user.


	
class go.apps.jsbox.outbound.GoOutboundResource(name, app_worker, config)

	Bases: vxsandbox.resources.utils.SandboxResource

Resource that provides outbound message support for Go.

Includes support for replying, replying to groups and sending
messages via given tags.

Configuration options:





	Parameters:	allowed_helper_metadata (list) – List of helper_metadata fields that may be set by sandboxed
applications.






	
handle_reply_to(api, command)

	Sends a reply to the individual who sent a received message.


	Command fields:

	
	content: The body of the reply message.

	in_reply_to: The message id of the message being replied
to.

	continue_session: Whether to continue the session (if any).
Defaults to true.

	helper_metadata: An object of additional helper metadata
fields to include in the reply.





	Reply fields:

	
	success: true if the operation was successful, otherwise
false.







Example:

api.request(
    'outbound.reply_to',
    {content: 'Welcome!',
     in_reply_to: '06233d4eede945a3803bf9f3b78069ec'},
    function(reply) { api.log_info('Reply sent: ' +
                                   reply.success); });










	
handle_reply_to_group(api, command)

	Sends a reply to the group from which a received message was sent.


	Command fields:

	
	content: The body of the reply message.

	in_reply_to: The message id of the message being replied
to.

	continue_session: Whether to continue the session (if any).
Defaults to true.

	helper_metadata: An object of additional helper metadata
fields to include in the reply.





	Reply fields:

	
	success: true if the operation was successful, otherwise
false.







Example:

api.request(
    'outbound.reply_to_group',
    {content: 'Welcome!',
     in_reply_to: '06233d4eede945a3803bf9f3b78069ec'},
    function(reply) { api.log_info('Reply to group sent: ' +
                                   reply.success); });










	
handle_send_to_endpoint(api, command)

	Sends a message to a specified endpoint.


	Command fields:

	
	content: The body of the reply message.

	to_addr: The address of the recipient (e.g. an MSISDN).

	endpoint: The name of the endpoint to send the message via.

	helper_metadata: An object of additional helper metadata
fields to include in the message being sent.





	Reply fields:

	
	success: true if the operation was successful, otherwise
false.







Example:

api.request(
    'outbound.send_to_endpoint',
    {content: 'Welcome!', to_addr: '+27831234567',
     endpoint: 'sms'},
    function(reply) { api.log_info('Message sent: ' +
                                   reply.success); });










	
handle_send_to_tag(*args, **kwargs)

	Sends a message to a specified tag.


	Command fields:

	
	content: The body of the reply message.

	to_addr: The address of the recipient (e.g. an MSISDN).

	tagpool: The name of the tagpool to send the message via.

	tag: The name of the tag (within the tagpool) to send the
message from. Your Go user account must have the tag acquired.





	Reply fields:

	
	success: true if the operation was successful, otherwise
false.







Example:

api.request(
    'outbound.send_to_tag',
    {content: 'Welcome!', to_addr: '+27831234567',
     tagpool: 'vumi_long', tag: 'default10001'},
    function(reply) { api.log_info('Message sent: ' +
                                   reply.success); });













metrics

This provides access to the metrics aggregation system inside Vumi.
Metrics that are fired here are aggregated and available for displaying
in a dashboard. The backend for this is Graphite.


	
class go.apps.jsbox.metrics.MetricsResource(name, app_worker, config)

	Bases: vxsandbox.resources.utils.SandboxResource

Resource that provides metric storing.


	
handle_fire(api, command)

	Fire a metric value.









http

This enables you to make outbound HTTP calls. GET, POST, PUT and DELETE
are available.


	
class vumi.application.sandbox.HttpClientResource(name, app_worker, config)

	Bases: vumi.application.sandbox.SandboxResource

Resource that allows making HTTP calls to outside services.

All command on this resource share a common set of command
and response fields:


	Command fields:

	
	url: The URL to request



	
	verify_options: A list of options to verify when doing

	an HTTPS request. Possible string values are VERIFY_NONE,
VERIFY_PEER, VERIFY_CLIENT_ONCE and
VERIFY_FAIL_IF_NO_PEER_CERT. Specifying multiple values
results in passing along a reduced OR value
(e.g. VERIFY_PEER | VERIFY_FAIL_IF_NO_PEER_CERT)







	
	headers: A dictionary of keys for the header name and a list

	of values to provide as header values.







	data: The payload to submit as part of the request.



	
	files: A dictionary, submitted as multipart/form-data

	in the request:

[{
    "field name": {
        "file_name": "the file name",
        "content_type": "content-type",
        "data": "data to submit, encoded as base64",
    }
}, ...]





The data field in the dictionary will be base64 decoded
before the HTTP request is made.











	Success reply fields:

	
	success: Set to true

	body: The response body

	code: The HTTP response code





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'http.get',
    {url: 'http://foo/'},
    function(reply) { api.log_info(reply.body); });






	
agent_class

	alias of Agent






	
handle_delete(api, command)

	Make an HTTP DELETE request.

See HttpResource for details.






	
handle_get(api, command)

	Make an HTTP GET request.

See HttpResource for details.






	
handle_head(api, command)

	Make an HTTP HEAD request.

See HttpResource for details.






	
handle_patch(api, command)

	Make an HTTP PATCH request.

See HttpResource for details.






	
handle_post(api, command)

	Make an HTTP POST request.

See HttpResource for details.






	
handle_put(api, command)

	Make an HTTP PUT request.

See HttpResource for details.









contacts

This resource provides access to the contact database stored in Vumi Go.
It allows you to create, delete and update contact information.


	
class go.apps.jsbox.contacts.ContactsResource(name, app_worker, config)

	Bases: vxsandbox.resources.utils.SandboxResource

Sandbox resource for accessing, creating and modifying contacts for
a Go application.

See go.vumitools.contact.Contact for a look at the Contact model
and its fields.


	
handle_get(*args, **kwargs)

	Accepts a delivery class and address and returns a contact’s data, as
well as the success flag of the operation (can be true or
false).


	Command fields:

	
	delivery_class: the type of channel used for the passed in
address. Can be one of the following types: sms, ussd,
twitter, gtalk, mxit, wechat.

	addr: The address to use to lookup of the contact. For
example, if sms was the delivery class, the address would
look something like +27731112233





	Success reply fields:

	
	success: set to true

	contact: An object containing the contact’s data. Looks
something like this:



{
    'key': 'f953710a2472447591bd59e906dc2c26',
    'surname': 'Person',
    'user_account': 'test-0-user',
    'bbm_pin': null,
    'msisdn': '+27831234567',
    'created_at': '2013-04-24 14:01:41.803693',
    'gtalk_id': null,
    'dob': null,
    'groups': ['group-a', 'group-b'],
    'facebook_id': null,
    '$VERSION': null,
    'twitter_handle': null,
    'mxit_id': null,
    'wechat_id': null,
    'email_address': null,
    'name': 'A Random'
}







	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'contacts.get',
    {delivery_class: 'sms', addr: '+27731112233'},
    function(reply) { api.log_info(reply.contact.name); });










	
handle_get_by_key(*args, **kwargs)

	Retrieve a contact object by key


	Command fields:

	
	key: The key identifying an existing contact.





	Success reply fields:

	
	success: set to true

	contact: An object containing the contact’s data





	Failure reply fields:

	
	success: set to false

	reason: A string describing the reason for the failure







Examples:

Retrieve a contact which is known to have key
‘391cea45-ae51-441c-b972-5de765c7a0dc’.

api.request(
    'contacts.get_by_key', {
         key: '391cea45-ae51-441c-b972-5de765c7a0dc',
    },
    function(reply) { api.log_info(reply.contact); });










	
handle_get_or_create(*args, **kwargs)

	Similar to handle_get(), but creates the contact if it does
not yet exist.


	Success reply fields:

	
	success: set to true

	contact: An object containing the contact’s data

	created: true if a new contact was created, otherwise
false





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure












	
handle_new(*args, **kwargs)

	Creates a new contacts with the given fields of an existing contact.


	Command fields:

	
	contact: The contact data to initialise the new contact with.





	Success reply fields:

	
	success: set to true

	contact: An object containing the contact’s data.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'contacts.new',
    {contact: {surname: 'Jones', extra: {location: 'CPT'}}},
    function(reply) { api.log_info(reply.success); });










	
handle_save(*args, **kwargs)

	Saves a contact’s data, overwriting the contact’s previous data. Use
with care. This operation only works for existing contacts. For
creating new contacts, use handle_new().


	Command fields:

	
	contact: The contact’s data. Note: key must be a
field in the contact data in order identify the contact.





	Success reply fields:

	
	success: set to true

	contact: An object containing the contact’s data.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'contacts.save', {
        contact: {
            'key': 'f953710a2472447591bd59e906dc2c26',
            'surname': 'Person',
            'user_account': 'test-0-user',
            'msisdn': '+27831234567',
            'groups': ['group-a', 'group-b'],
            'name': 'A Random'
        }
    },
    function(reply) { api.log_info(reply.success); });










	
handle_search(*args, **kwargs)

	Search for contacts


	Command fields:

	
	query: The Lucene search query to perform.



	
	max_keys: If present, a non-negative number that specifies

	the maximum number of keys to return in the result.
By default keys for all matching contacts are
returned.











	Success reply fields:

	
	success: set to true

	keys: A list of keys for matching contacts.







Note: If no matches are found keys will be an empty list.


	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Examples:

Searching on a single contact field:

api.request(
    'contacts.search', {
         query: 'name:"My Name"',
    },
    function(reply) { api.log_info(reply.keys); });










	
handle_update(*args, **kwargs)

	Updates the given fields of an existing contact.

Note: All subfields of a Dynamic field such as extra and
subscription are overwritten if specified as one of the fields to
be updated.


	Command fields:

	
	key: The contacts key

	fields: The contact fields to be updated





	Success reply fields:

	
	success: set to true

	contact: An object containing the contact’s data.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'contacts.update', {
         key: 'f953710a2472447591bd59e906dc2c26',
         fields: {surname: 'Jones', extra: {location: 'CPT'}}},
    function(reply) { api.log_info(reply.success); });










	
handle_update_extras(api, command)

	Updates subfields of an existing contact’s extra field.


	Command field:

	
	key: The contact’s key

	fields: The extra fields to be updated





	Success reply fields:

	
	success: set to true

	contact: An object containing the contact’s data.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'contacts.update_extras', {
        key: f953710a2472447591bd59e906dc2c26',
        fields: {location: 'CPT', beer: 'Whale Tail Ale'}},
    function(reply) { api.log_info(reply.success); });










	
handle_update_subscriptions(api, command)

	Updates subfields of an existing contact’s subscription field.


	Command field:

	
	key: The contact’s key

	fields: The subscription fields to be updated





	Success reply fields:

	
	success: set to true

	contact: An object containing the contact’s data.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'contacts.update_subscriptions', {
        key: f953710a2472447591bd59e906dc2c26',
        fields: {a: 'one', b: 'two'}},
    function(reply) { api.log_info(reply.success); });













groups

This resource provides access to the groups stored in Vumi Go.
It allows you to find, create and update group information and retrieve
their member counts.


	
class go.apps.jsbox.contacts.GroupsResource(name, app_worker, config)

	Bases: vxsandbox.resources.utils.SandboxResource

Sandbox resource for accessing, creating and modifying groups for
a Go application.

See go.vumitools.contact.ContactGroup for a look at the Contact
model and its fields.


	
handle_count_members(*args, **kwargs)

	Count the number of members in a group.


	Command fields:

	
	key: The key of the group to retrieve





	Success reply fields:

	
	success: set to true

	group: A dictionary with the group’s data.

	count: The number of members in this group.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'groups.count_members', {
         key: 'a-key'
    },
    function(reply) { api.log_info(reply.group); });










	
handle_get(*args, **kwargs)

	Get a group by its key


	Command fields:

	
	key: The key of the group to retrieve





	Success reply fields:

	
	success: set to true

	group: A dictionary with the group’s data.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'groups.get', {
         key: 'a-key',
    },
    function(reply) { api.log_info(reply.group); });










	
handle_get_by_name(*args, **kwargs)

	Get a group by its name


	Command fields:

	
	name: The key of the group to retrieve





	Success reply fields:

	
	success: set to true

	group: A dictionary with the group’s data.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure





	Note:   If more than 1 matching groups are found a Failure reply is

	returned.



Example:

api.request(
    'groups.get_by_name', {
         name: 'My Group',
    },
    function(reply) { api.log_info(reply.group); });










	
handle_get_or_create_by_name(*args, **kwargs)

	Get or create a group by its name


	Command fields:

	
	name: The name of the group to get or create





	Success reply fields:

	
	success: set to true

	group: A dictionary with the group’s data.

	created: A boolean, True if created, False if not.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'groups.get_or_create_by_name', {
         name: 'My Group',
    },
    function(reply) { api.log_info(reply.group); });










	
handle_list(*args, **kwargs)

	List all known groups

Command fields: None


	Success reply fields:

	
	success: set to true

	groups: A list of dictionaries with group data





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'groups.list', {},
    function(reply) { api.log_info(reply.groups); });










	
handle_search(*args, **kwargs)

	Search for groups


	Command fields:

	
	query: The Lucene search query to perform.





	Success reply fields:

	
	success: set to true

	groups: An list of dictionaries with group information.







Note:   If no matches are found groups will be an empty list.


	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'groups.search', {
         query: 'name:"My Group"',
    },
    function(reply) { api.log_info(reply.groups); });










	
handle_update(*args, **kwargs)

	Update a group’s name or query.


	Command fields:

	
	key: The key of the group to retrieve

	name: The new name

	query: The query to store, defaults to None.





	Note:   If a query is provided the group is treated as a

	“smart” group.

	Success reply fields:

	
	success: set to true

	group: A dictionary with the group’s updated data.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure







Example:

api.request(
    'groups.update', {
         key: 'a-key',
         name: 'My New Group',
         query: 'name:foo*'
    },
    function(reply) { api.log_info(reply.group); });













log

Provides logging facilities for your application. These logs are available
for viewing in the UI. The 1000 most recent log entries are stored.


	
class go.apps.jsbox.log.GoLoggingResource(name, app_worker, config)

	Bases: vxsandbox.resources.logging.LoggingResource

Resource that allows a sandbox to log messages.

Messages are logged both via Twisted’s logging framework and
to a per-conversation log store in Redis.





kv

Provides access to a Redis backed key value store. GET, SET and INCR
operations are available. There is a limit of 10000 keys per user.


	
class vumi.application.sandbox.RedisResource(name, app_worker, config)

	Bases: vumi.application.sandbox.SandboxResource

Resource that provides access to a simple key-value store.

Configuration options:





	Parameters:	
	redis_manager (dict) – Redis manager configuration options.

	keys_per_user_soft (int) – Maximum number of keys each user may make use of in redis
before usage warnings are logged.
(default: 80% of hard limit).

	keys_per_user_hard (int) – Maximum number of keys each user may make use of in redis
(default: 100). Falls back to keys_per_user.

	keys_per_user (int) – Synonym for keys_per_user_hard. Deprecated.










	
handle_delete(*args, **kwargs)

	Delete a key.


	Command fields:

	
	key: The key to delete.





	Reply fields:

	
	success: true if the operation was successful, otherwise
false.







Example:

api.request(
    'kv.delete',
    {key: 'foo'},
    function(reply) {
        api.log_info('Value deleted: ' +
                     reply.success);
    }
);










	
handle_get(*args, **kwargs)

	Retrieve the value of a key.


	Command fields:

	
	key: The key whose value should be retrieved.





	Reply fields:

	
	success: true if the operation was successful, otherwise
false.

	value: The value retrieved.







Example:

api.request(
    'kv.get',
    {key: 'foo'},
    function(reply) {
        api.log_info(
            'Value retrieved: ' +
            JSON.stringify(reply.value));
    }
);










	
handle_incr(*args, **kwargs)

	Atomically increment the value of an integer key.

The current value of the key must be an integer. If the key does not
exist, it is set to zero.


	Command fields:

	
	key: The key to delete.

	amount: The integer amount to increment the key by. Defaults
to 1.





	Reply fields:

	
	success: true if the operation was successful, otherwise
false.

	value: The new value of the key.







Example:

api.request(
    'kv.incr',
    {key: 'foo',
     amount: 3},
    function(reply) {
        api.log_info('New value: ' +
                     reply.value);
    }
);










	
handle_set(*args, **kwargs)

	Set the value of a key.


	Command fields:

	
	key: The key whose value should be set.

	value: The value to store. May be any JSON serializable
object.

	seconds: Lifetime of the key in seconds. The default null
indicates that the key should not expire.





	Reply fields:

	
	success: true if the operation was successful, otherwise
false.







Example:

api.request(
    'kv.set',
    {key: 'foo',
     value: {x: '42'}},
    function(reply) { api.log_info('Value store: ' +
                                   reply.success); });













messagestore

Provides access to the stats in the messagestore. Specifically counts of
messages sent, received, unique “from_addr”s and “to_addr”s and
calculated throughput of any conversation linked to a Vumi Go account.


	
class go.apps.jsbox.message_store.MessageStoreResource(name, app_worker, config)

	Bases: vxsandbox.resources.utils.SandboxResource


	
handle_count_inbound_uniques(*args, **kwargs)

	Count from how many unique “from_addr”s messages were received.

If no conversation is specified then the current application’s
conversation is used.


	Command fields:

	
	conversation_key: The key of the conversation to use.
This is optional, if not specified the application’s own
conversation is used.





	Success reply fields:

	
	success: set to true

	count: the number of unique “from_addr”s messages
were sent.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.












	
handle_count_outbound_uniques(*args, **kwargs)

	Count to how many unique “to_addr”s messages were sent.

If no conversation is specified then the current application’s
conversation is used.


	Command fields:

	
	conversation_key: The key of the conversation to use.
This is optional, if not specified the application’s own
conversation is used.





	Success reply fields:

	
	success: set to true

	count: the number of unique “to_addrs”s messages
were sent.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.












	
handle_count_replies(*args, **kwargs)

	Count how many messages were received in the conversation.

If no conversation is specified then the current application’s
conversation is used.


	Command fields:

	
	conversation_key: The key of the conversation to use.
This is optional, if not specified the application’s own
conversation is used.





	Success reply fields:

	
	success: set to true

	count: the number of messages received





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.












	
handle_count_sent_messages(*args, **kwargs)

	Count how many messages were sent in the conversation.

If no conversation is specified then the current application’s
conversation is used.


	Command fields:

	
	conversation_key: The key of the conversation to use.
This is optional, if not specified the application’s own
conversation is used.





	Success reply fields:

	
	success: set to true

	count: the number of messages sent





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.












	
handle_inbound_throughput(*args, **kwargs)

	Count how many messages a minute were received.

If no conversation is specified then the current application’s
conversation is used.


	Command fields:

	
	conversation_key: The key of the conversation to use.
This is optional, if not specified the application’s own
conversation is used.

	sample_time: How far to look back to calculate the
throughput. Defaults to 300 seconds (5 minutes)





	Success reply fields:

	
	success: set to true

	throughput: how many inbound messages per minute the
conversation has done on average.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.












	
handle_outbound_throughput(*args, **kwargs)

	Count how many messages a minute were sent.

If no conversation is specified then the current application’s
conversation is used.


	Command fields:

	
	conversation_key: The key of the conversation to use.
This is optional, if not specified the application’s own
conversation is used.

	sample_time: How far to look back to calculate the
throughput. Defaults to 300 seconds (5 minutes)





	Success reply fields:

	
	success: set to true

	throughput: how many outbound messages per minute the
conversation has done on average.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.












	
handle_progress_status(*args, **kwargs)

	Accepts a conversation_key and retrieves the progress_status
breakdown for that conversation.

If no conversation is specified then the current application’s
conversation is used.


	Command fields:

	
	conversation_key: The key of the conversation to use.
This is optional, if not specified the application’s own
conversation is used.





	Success reply fields:

	
	success: set to true

	progress_status: A dictionary with a break down of the
conversations progress status:



{
    'ack': 1,
    'delivery_report': 0,
    'delivery_report_delivered': 0,
    'delivery_report_failed': 0,
    'delivery_report_pending': 0,
    'nack': 0,
    'sent': 1,
}







	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.















optout

Provides access to the opt-out status of contacts. Allows one to check, count and change the opt-out status of address_type and address_value pairs.


Note

This resource needs to be enabled on a per-account basis.
By default it is disabled for all accounts.




	
class go.apps.jsbox.opt_out.OptOutResource(name, app_worker, config)

	Bases: vxsandbox.resources.utils.SandboxResource


	
handle_cancel_optout(api, command)

	Cancel an opt-out, effectively opting an address_type & address_value
combination back in.


	Command fields:

	
	address_type: the type of address cancel the opt-out for.

	address_value: the value of the address_type to cancel
the opt-out for.





	Success reply fields:

	
	success: set to true

	opted_out: set to false





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.












	
handle_count(*args, **kwargs)

	Return a count of however many opt-outs there are

Command fields: None


	Success reply fields:

	
	success: set to true

	count: an Integer.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.












	
handle_optout(api, command)

	Opt out an address_type, address_value combination


	Command fields:

	
	address_type: the type of address to opt-out.
At the moment only msisdn is used.

	address_value: the value of the address_type to opt-out.

	message_id the message_id of the message that triggered
the opt-out, for auditing purposes.





	Success reply fields:

	
	success: set to true

	opted_out: set to true

	created_at: the timestamp of the opt-out

	message_id: the message_id of the message that triggered
the opt-out.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.












	
handle_status(api, command)

	Accepts an address_type and address_value and
retrieves the opt-out entry for it.


	Command fields:

	
	address_type: the type of address to check for opt-out
status on. At the moment only msisdn is used.

	address_value: the value of the address_type to check.
At the moment this would be a normalized msisdn.





	Success reply fields:

	
	success: set to true

	opted_out: set to true or false

	created_at: the timestamp of the opt-out (if opted out)

	message_id: the message_id of the message that triggered
the opt-out.





	Failure reply fields:

	
	success: set to false

	reason: Reason for the failure.



















          

      

      

    


    
         Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Vumi Go 0.5.1a documentation 
 
      

    


    
      
          
            
  
Example Code for Javascript Sandbox features

The way the Javascript sandbox talks to the outside world can sometimes
be a bit un-intuitive when first starting with Vumi Go development.

Here are some code samples to give you a head start:


Using the Key-Value store:

The KV store allows for GET, SET and INCR operations.
These are namespaced to your account unless you explicitly namespace
it differently per conversation. This allows you to share counters
across different applications.

If you’re looking for DECR just use INCR with a negative value.

https://github.com/smn/go-kv-store




Firing Events from an Application

Metrics are crucial for any application. Our metrics backend is powered
by Graphite and your application can send metrics to Graphite for aggregation.

The metrics are not yet visible within the UI but hopefully will be graphed
there soon.

https://github.com/smn/go-events-firing




Using the HTTP API

The HTTP API allows for interacting with 3rd party applications that are
not hosted on our platform. It allows for both streaming of messages in
real time or using HTTP POST to forward message (and message events) to
a remote URL.


	Django backend for HTTP forwarding setup:

	https://github.com/smn/go-heroku

	Node.js backend for consuming the Streaming API:

	https://github.com/smn/go-heroku-streaming









          

      

      

    


    
         Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Vumi Go 0.5.1a documentation 
 
      

    


    
      
          
            
  
Vumi Go’s HTTP API

The API allows for sending & receiving Vumi messages via HTTP. These
messages are plain JSON strings. Three types of messages are available:



	Inbound and outbound user messages (e.g. SMSes, USSD responses,
Twitter messages)

	Events (e.g. delivery reports, acknowledgements)

	Metrics (values recorded at a specific time)






Inbound user messages and events can be received via streaming HTTP or
can be pushed to a third party URL via HTTP POST.  Outbound messages and
metrics can be pushed to Vumi Go via HTTP PUT.

Each HTTP api is bound to a conversation which stores all of the
messages sent and received. HTTP Basic auth is used for
authentication, the username is the Vumi Go account key and the
password is an access token that is stored in the conversation. In
order to connect three keys are required:


	The account key

	The accesss token

	The conversation key




Inbound and Outbound User Messages

This is the format for messages being sent to, or received from, a
person.

User messages are JSON objects of the following format:

{
    "message_id": "59b37288d8d94e42ab804158bdbf53e5",
    "in_reply_to": null,
    "session_event": null,
    "to_addr": "1234",
    "to_addr_type": "msisdn",
    "from_addr": "+27761234567",
    "from_addr_type": "msisdn",
    "content": "This is an incoming SMS!",
    "transport_name": "smpp_transport",
    "transport_type": "sms",
    "transport_metadata": {
        // this is a dictionary containing
        // transport specific data
    },
    "helper_metadata": {
        // this is a dictionary containing
        // application specific data
    }
}





A reply to this message would put the value of the “message_id” in the
“in_reply_to” field so as to link the two.

The from_addr_type and to_addr_type fields describe the type of address
declared in from_addr and to_addr. The default for to_addr_type is
msisdn, and the default for from_addr_type is null, which is used to
mark that the type is unspecified. The other valid values are irc_nickname,
twitter_handle, gtalk_id, jabber_id, mxit_id, and wechat_id.

The “session_event” field is used for transports that are session oriented,
primarily USSD. This field will be either “null”, “new”, “resume” or “close”.
There are no guarantees that these will be set for USSD as it depends on
the networks whether or not these values are available. If replying to a
message in USSD session then set the “session_event” to “resume” if you are
expecting a reply back from the user or to “close” if the message you are
sending is the last message and the session is to be closed.

The go-heroku [https://github.com/smn/go-heroku/] application is an
example app that uses the HTTP API to receive and send messages.

A Python client for the HTTP API is available at
https://github.com/praekelt/go-http-api. It can be installed with
pip install go-http.




Sending Messages

$ curl -X PUT \
       --user '<account-key>:<access-token>' \
       --data '{"in_reply_to": "59b37288d8d94e42ab804158bdbf53e5", \
                "to_addr": "+27761234567", \
                "to_addr_type": "msisdn", \
                "content": "This is an outgoing SMS!"}' \
       http://go.vumi.org/api/v1/go/http_api_nostream/<conversation-key>/messages.json \
       -vvv





The UI expects you to specify an access token. All requests to the API
require you to use your account key as the username and the token as the
password.

The response to the PUT request is the complete Vumi Go user message
and includes the generated Vumi message_id which should be stored
if you wish to be able to associate events with the message later.

If a message is sent to a recipient that has opted out, the response will be an
HTTP 400 error, with the body detailing that the recipient has opted out.
Messages sent as a reply will still go through to an opted out recipient. The
following is an example response of the error returned by the API:

{
    "success": false,
    "reason": "Recipient with msisdn +12345 has opted out"
}





This behaviour can be overridden by setting the disable_optout flag in the
account to True. Ask a Vumi Go admin if you need to have optouts disabled.




Receiving User Messages

Vumi Go will forward any inbound messages to your application via an
HTTP POST. Please specify the URL in the Go UI. You can include a
username and password in the URL and use HTTPS if you require
authentication.

There is a separate URL for receiving events.




Events

This is the format for events. Each event is associated with an
outbound user message.

Events are JSON messages with the following format:

{
    "message_type": "event",
    "event_id": "b04ec322fc1c4819bc3f28e6e0c69de6",
    "event_type": "ack",
    "user_message_id": "60c48289d8d94e42ab804159acce42d4",
    "helper_metadata": {
        // this is a dictionary containing
        // application specific data
    },
    "timestamp": "2014-10-28 16:19:37.485612",
    "sent_message_id": "external-id",
}





The event_id unique id for this event.

The user_message_id is the id of the outbound message the event is
for (this should be returned to you when you post the message to the
HTTP API).

The event_type is the type of event and can be either ack,
nack or delivery_report.

An ack indicates that the outbound message was succesfully sent to
a third party (e.g. a cellphone network operator) for sending. A
nack indicates that the message was not successfully sent to a
third party and should be resent. The reason the message could not be
sent will be given in the nack_reason field. Every outbound
message should receive either an ack or a nack event.

A delivery_report indicates whether a message has successfully
reached it’s final destination (e.g. a cellphone). Delivery reports
are only available for some SMS channels. The delivery status will be
given in the delivery_status field and can be one of pending
(SMS is still waiting to be delivered to the cellphone), failed
(the cellphone operator has given up attempting to deliver the SMS) or
delivered (the SMS was successfully delivered to the cellphone).


Note

The meaning of delivery statuses can vary subtly between cellphone
operators and should not be relied upon without careful testing of
your specific use case.






Receiving Events

Vumi Go will forward any events to your application via an HTTP
POST. Please specify the URL in the Go UI. You can include a username
and password in the URL and use HTTPS if you require authentication.

This is a separate URL to the one for receiving user messages.




Publishing Metrics

You are able to publish metrics to Vumi Go via the HTTP APIs metrics endpoint.
These metrics are able to be displayed in the Vumi GO UI using the dashboards.

How these dashboards are configured is explained in Vumi Go Dashboards.

PUT http://go.vumi.org/api/v1/go/http_api_nostream/<conversation-key>/metrics.json





An example using curl from the commandline:

$ curl -X PUT \
    --user '<account-key>:<access-token>' \
    --data '[["total_pings", 1200, "MAX"]]' \
    https://go.vumi.org/api/v1/go/http_api_nostream/<conversation-key>/metrics.json \
    -vvv











          

      

      

    


    
         Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Vumi Go 0.5.1a documentation 
 
      

    


    
      
          
            
  
Vumi Go Dashboards

Vumi has growing support for dashboards. These dashboards are backed by
Graphite and Vumi applies some bucketing of metrics before publishing
to Graphite.


Note

Graphite itself is not directly accessible for 3rd party applications.




Conversation Types supporting Dashboards

The visualization of dashboards is currently only supported by the
Javascript sandbox conversation type.

The publishing of metrics to a dashboard is supported by the Vumi Go’s HTTP API
and the Javascript application conversation types.

Metrics can be shared between conversations if they share the same metrics
store value.




Dashboard Setup

Dashboards are set up by creating a Javascript application type and
ensuring there is a reports section that has a JSON dashboard
description.

The report defines:


	The layout

	The widgets

	The metrics



Here is a sample reports.json file from
go-events-firing-via-http [https://github.com/smn/go-events-firing-via-http]

{
  "layout": [
    {
      "type": "diamondash.widgets.lvalue.LValueWidget",
      "time_range": "1d",
      "name": "Last Ping Count",
      "target": {
        "metric_type": "account",
        "store": "default",
        "name": "total_pings",
        "aggregator": "max"
      }
    },
    "new_row",
    {
      "type": "diamondash.widgets.graph.GraphWidget",
      "name": "Ping Counts",
      "width": 6,
      "time_range": "1d",
      "bucket_size": "1h",
      "metrics": [
        {
          "name": "Pings",
          "target": {
            "metric_type": "account",
            "store": "default",
            "name": "total_pings",
            "aggregator": "max"
          }
        }
      ]
    }
  ]
}





Once a reports section is created the Vumi Go UI will read the
definition and render the dashboard widgets for you in the Reports page.




Available Widgets

The following widgets are available:


LValueWidget

Displays two values of a metrics, the current value and the value of the
metric a configurable time ago. The time difference between the two
values is determined by the time_range value.

{
  "type": "diamondash.widgets.lvalue.LValueWidget",
  "time_range": "1d",
  "name": "Last Ping Count",
  "target": {
    "metric_type": "account",
    "store": "default",
    "name": "total_pings",
    "aggregator": "max"
  }
}








GraphWidget

Displays a line graph. Multiple metrics can be rendered on the same graph.

{
  "type": "diamondash.widgets.graph.GraphWidget",
  "name": "Ping Counts",
  "width": 6,
  "time_range": "1d",
  "bucket_size": "1h",
  "metrics": [
    {
      "name": "Pings",
      "target": {
        "metric_type": "account",
        "store": "default",
        "name": "total_pings",
        "aggregator": "max"
      }
    }
  ]
}








HistogramWidget

Display a histogram of the metrics.

{
    "type": "diamondash.widgets.histogram.HistogramWidget",
    "name": "Total Pings (Histogram)",
    "target": {
      "metric_type": "account",
      "store": "default",
      "name": "total_pings",
      "aggregator": "max"
    },
    "time_range": "1h",
    "bucket_size": "5m",
    "width": 6
}








PieWidget

Display a pie chart of metric values.

{
    "type": "diamondash.widgets.pie.PieWidget",
    "name": "Total Pings (Pie)",
    "time_range": "1d",
    "width": 6,
    "metrics": [
      {
        "name": "Total Pings",
        "target": {
          "metric_type": "account",
          "store": "default",
          "name": "total_pings",
          "aggregator": "max"
        }
      }
    ]
}













          

      

      

    


    
         Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Vumi Go 0.5.1a documentation 
 
      

    


    
      
          
            
  
Vumi Go Architecture


Notes



	☢ indicates that a component requires requests to be
authenticated (i.e. it is intended to be exposed as a public service).

	Public services are expected to use Nginx internal redirects
to return results of specific requests to internal services as needed.












          

      

      

    


    
         Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Vumi Go 0.5.1a documentation 
 
      

    


    
      
          
            
  
Vumi Go Messaging Architecture





          

      

      

    


    
         Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	Vumi Go 0.5.1a documentation 
 
      

    


    
      
          
            

Index



 A
 | C
 | G
 | H
 | M
 | O
 | R
 


A


  	
      
  	agent_class (vumi.application.sandbox.HttpClientResource attribute)
  


  





C


  	
      
  	ContactsResource (class in go.apps.jsbox.contacts)
  


  

  	
      
  	ConversationConfigResource (class in go.apps.jsbox.vumi_app)
  


  





G


  	
      
  	GoLoggingResource (class in go.apps.jsbox.log)
  


      
  	GoOutboundResource (class in go.apps.jsbox.outbound)
  


  

  	
      
  	GroupsResource (class in go.apps.jsbox.contacts)
  


  





H


  	
      
  	handle_cancel_optout() (go.apps.jsbox.opt_out.OptOutResource method)
  


      
  	handle_count() (go.apps.jsbox.opt_out.OptOutResource method)
  


      
  	handle_count_inbound_uniques() (go.apps.jsbox.message_store.MessageStoreResource method)
  


      
  	handle_count_members() (go.apps.jsbox.contacts.GroupsResource method)
  


      
  	handle_count_outbound_uniques() (go.apps.jsbox.message_store.MessageStoreResource method)
  


      
  	handle_count_replies() (go.apps.jsbox.message_store.MessageStoreResource method)
  


      
  	handle_count_sent_messages() (go.apps.jsbox.message_store.MessageStoreResource method)
  


      
  	handle_delete() (vumi.application.sandbox.HttpClientResource method)
  


      	
        
  	(vumi.application.sandbox.RedisResource method)
  


      


      
  	handle_fire() (go.apps.jsbox.metrics.MetricsResource method)
  


      
  	handle_get() (go.apps.jsbox.contacts.ContactsResource method)
  


      	
        
  	(go.apps.jsbox.contacts.GroupsResource method)
  


        
  	(vumi.application.sandbox.HttpClientResource method)
  


        
  	(vumi.application.sandbox.RedisResource method)
  


      


      
  	handle_get_by_key() (go.apps.jsbox.contacts.ContactsResource method)
  


      
  	handle_get_by_name() (go.apps.jsbox.contacts.GroupsResource method)
  


      
  	handle_get_or_create() (go.apps.jsbox.contacts.ContactsResource method)
  


      
  	handle_get_or_create_by_name() (go.apps.jsbox.contacts.GroupsResource method)
  


      
  	handle_head() (vumi.application.sandbox.HttpClientResource method)
  


      
  	handle_inbound_throughput() (go.apps.jsbox.message_store.MessageStoreResource method)
  


      
  	handle_incr() (vumi.application.sandbox.RedisResource method)
  


      
  	handle_list() (go.apps.jsbox.contacts.GroupsResource method)
  


      
  	handle_new() (go.apps.jsbox.contacts.ContactsResource method)
  


  

  	
      
  	handle_optout() (go.apps.jsbox.opt_out.OptOutResource method)
  


      
  	handle_outbound_throughput() (go.apps.jsbox.message_store.MessageStoreResource method)
  


      
  	handle_patch() (vumi.application.sandbox.HttpClientResource method)
  


      
  	handle_post() (vumi.application.sandbox.HttpClientResource method)
  


      
  	handle_progress_status() (go.apps.jsbox.message_store.MessageStoreResource method)
  


      
  	handle_put() (vumi.application.sandbox.HttpClientResource method)
  


      
  	handle_reply_to() (go.apps.jsbox.outbound.GoOutboundResource method)
  


      
  	handle_reply_to_group() (go.apps.jsbox.outbound.GoOutboundResource method)
  


      
  	handle_save() (go.apps.jsbox.contacts.ContactsResource method)
  


      
  	handle_search() (go.apps.jsbox.contacts.ContactsResource method)
  


      	
        
  	(go.apps.jsbox.contacts.GroupsResource method)
  


      


      
  	handle_send_to_endpoint() (go.apps.jsbox.outbound.GoOutboundResource method)
  


      
  	handle_send_to_tag() (go.apps.jsbox.outbound.GoOutboundResource method)
  


      
  	handle_set() (vumi.application.sandbox.RedisResource method)
  


      
  	handle_status() (go.apps.jsbox.opt_out.OptOutResource method)
  


      
  	handle_update() (go.apps.jsbox.contacts.ContactsResource method)
  


      	
        
  	(go.apps.jsbox.contacts.GroupsResource method)
  


      


      
  	handle_update_extras() (go.apps.jsbox.contacts.ContactsResource method)
  


      
  	handle_update_subscriptions() (go.apps.jsbox.contacts.ContactsResource method)
  


      
  	HttpClientResource (class in vumi.application.sandbox)
  


  





M


  	
      
  	MessageStoreResource (class in go.apps.jsbox.message_store)
  


  

  	
      
  	MetricsResource (class in go.apps.jsbox.metrics)
  


  





O


  	
      
  	OptOutResource (class in go.apps.jsbox.opt_out)
  


  





R


  	
      
  	RedisResource (class in vumi.application.sandbox)
  


  







          

      

      

    


    
         Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  _static/minus.png





_static/comment.png





_static/up.png





_static/comment-bright.png





_static/file.png





_static/comment-close.png





_static/down.png





_static/ajax-loader.gif





search.html


    
      Navigation


      
        		
          index


        		Vumi Go 0.5.1a documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  

GETTING_STARTED.html


    
      Navigation


      
        		
          index


        		Vumi Go 0.5.1a documentation »

 
      


    


    
      
          
            
  
Getting started with vumi-go


Author: Mike JonesAll bad practices and advice is entirely the fault of the author


These notes are in addition to these [https://github.com/praekelt/vumi-go/blob/develop/README.rst]



Source


Github repo [https://github.com/praekelt/vumi-go]





Environment


Use Vagrant for sanity. Getting Started [http://docs.vagrantup.com/v1/docs/getting-started/index.html]


Use the precise64.box [http://files.vagrantup.com/precise64.box] (323MB)


Vagrantfile here [https://gist.github.com/imsickofmaps/3aca802406e6bc4ba278]


Chef scripts here [https://gist.github.com/imsickofmaps/5144946]


Riak config changes here [https://gist.github.com/imsickofmaps/5145116]





Vumi-go Install


Connect to your vagrant environment using vagrant ssh


Go to the mapped vumi-go folder root (/srv/vumi-go if you used Vagrantfile above)


Run:


$ virtualenv --no-site-packages ve
$ source ve/bin/activate
(ve)$ pip install -r requirements.pip






Vumi setup


Vumi needs access to rabbitmq and there’s a nice little helper script for you (read the source before sudoing for security):


(ve)$ sudo ./ve/src/vumi/utils/rabbitmq.setup.sh






Vumi-go Configs


Base configs can be found here [https://gist.github.com/smn/e2c1bded79a961b6c450]


Copy them to local-config (which you’ll need to create):


Next update the file local-config/gtalk_transports.yaml and replace the 2 user@xmpp.org entries with whatever GTalk address you are using.


Create etc in the root and copy across supervisord.conf





Start-up


Ensure that Redis is running and run:


(ve)$ PYTHONPATH=. python ve/src/vumi/vumi/scripts/vumi_tagpools.py -c config/tagpools.yaml create-pool xmpp



This populates Redis with the account information Vumi Go needs in order to bind messaging accounts to actual conversations.


When that’s done fire up supervisord:


(ve)$ supervisord 
(ve)$ supervisorctl status



Final config:


Populate the sqlite db for the Django webapp:


(ve)$ ./go-admin.sh syncdb --noinput --migrate 



Create user and enter the necessary details (Name is just first name):


(ve)$ ./go-admin.sh go_create_user



Use the email address to associate with xmpp account:


(ve)$ ./go-admin.sh go_assign_tagpool --email-address=<email of account created> --tagpool=xmpp --max-keys=0



Give yourself some credit:


(ve)$ ./go-admin.sh go_manage_credit --email-address=<email of account created> --add-credit=1000



Grant yourself application permissions:


(ve)$ ./go-admin.sh go_manage_application --email-address=<email of account created> --application-module=go.apps.bulk_message --enable 
(ve)$ ./go-admin.sh go_manage_application --email-address=<email of account created> --application-module=go.apps.surveys --enable



Fire up this bad boy:


(ve)$ ./go-admin.sh runserver [::]:8000
(ve)$ supervisorctl start all






Go go go!


Log in at http://localhost:8000





Debugging


Run tail on files in `./logs/ ... look at .err and .log because sometimes errors are in .log :grin:








          

      

      

    


    
        © Copyright 2013-2014, Praekelt Foundation and individual contributors.
      Created using Sphinx 1.3.1.
    

  

_static/up-pressed.png






_static/plus.png





_static/down-pressed.png





